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Abstract: We investigate the influence of solvation media upon the relationship among structure, spatial
distribution of electron density, and linear and nonlinear electric properties for two series of push-pull
π-conjugated molecules. The analysis is performed on both electronic and vibrational components of static
polarizability and first hyperpolarizability, and the effects solvent induce on them are analyzed singularly
within the framework of the polarization continuum model. Solvent is found to affect the extent of charge
separation induced in the ground state of these molecules. This charge separation leads to a geometric distortion,
measured by the bond-length-alternation (BLA) parameter, which shows a solvent-induced evolution of the
molecular geometry from a neutral, bond-alternated polyene-like structure, to a partially ionic cyanine-like
structure, and ultimately to an ionic bond-alternated structure. As a consequence large changes in the linear
and nonlinear response properties are found, in both their electronic and vibrational contributions. Regarding
the latter, we recall that studies on vibrational (hyper)polarizabilities for molecular systems in solution are
presented here for the first time.

1. Introduction

In the last few years, numerous theoretical efforts have been
devoted to the computation of (hyper)polarizabilities of molec-
ular and polymeric systems;1 this is in fact a very active field
of research being directly related to the design of new
compounds for nonlinear optics (NLO) applications. Accurate
ab initio quantum chemistry studies in this field provide efficient
tools to understand the physical bases beyond the phenomena
and to derive structure-property relationships, in addition to
offer a reliable comparison with experimental data. Until very
recently, most of these studies have focused on the electronic
(hyper)polarizabilities; actually, the global effect of an applied
external electrical field on a given molecular system has to be
seen in terms of distortions both in the electronic charge
distribution (i.e., the field acts as a source of electronic response)
and in the nuclear motions which lead to vibrational contribu-
tions to (hyper)polarizabilities.

The necessity to take into account vibrational components,
which was first recognized many years ago, has recently
received a new great consideration, especially thanks to the
works of Professor Bishop (for the moment we limit ourselves
to quote two reviews, one published in the early 1990s2 and
the other quite recent,3 but other papers will be given in the

following). This new interest originated an important develop-
ment in theoretical studies on electric response functions so that,
nowadays, papers in this field at least have to mention that, in
addition to variations in the electronic charge distribution of
the molecular system, there will be a change in its equilibrium
geometry and, as a result of there being a different potential-
energy curve or surface in the presence of the field, a change
in the vibrational motion.

The question of vibration involves much more than the usual
requirement of averaging an electronic property over the
vibrational motion, e.g., the zero-point vibrational correction
(ZPC), which usually changes (hyper)polarizability values by
roughly a few percent; it contributes with a specific term to
each (hyper)polarizability value. As a matter of fact the full
vibrational contribution can be decomposed into two distinct
components,4,5 the “curvature” (curv) related to the field-
dependent vibrational frequencies (i.e., the changes in the
potential energy surface) and including the ZPC contribution,
and the “nuclear relaxation” (nr) originated from the field-
induced nuclear relaxation (i.e., the shift of the equilibrium
geometry).

Although accurate numerical calculations of vibrational
(hyper)polarizabilities have been carried out for molecular
systems in vacuo,6-9 no studies of the solvent effect on these
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quantities have appeared yet. All the papers on ab initio
calculations of linear and nonlinear properties of molecular
solutes immersed in liquid solvents refer in fact to electronic
contributions only (see refs 10-13), eventually with inclusion
of the ZPC contribution.14 This paper is then the first attempt
dealing with ab initio evaluation of vibrational static polariz-
ability and first polarizability of molecular systems in solution.

The selected systems for the present study belong to the
category of push-pull π-conjugated molecules, i.e., systems
where a conjugated linker segment is capped by a donor group
on one end and an acceptor on the other. Many donors and
acceptors, as well as conjugated linkers of various nature and
length, have been investigated both theoretically and experi-
mentally.15-17 The specificity of this kind of molecule, in
particularly we shall focus on substituted polyenes, is that their
ground-state (GS) structure can be represented as a combination
of different resonance forms, differing in the extent of charge
separation (see Figure 1).

When the donor and acceptor groups are weak, the neutral
polyene-like resonance form dominates the ground state and
the molecule has a structure with a distinct alternation in the
bond length between neighboring carbon atoms, i.e., a high
degree of bond length alternation (BLA), defined as the
difference between average single and double bond distances
in the conjugated pathway. When donor and acceptor substit-
uents become stronger, the contribution of ionic resonance forms
to the ground state increases, and BLA first decreases until
almost zero values (in the intermediate cyanine-like structure
with partial charge separation) and then increases again toward
the high negative values proper of the fully charge-separated
polymethine-like (or zwitterionic) form. The relative contribu-
tion of these three resonance forms to the GS is also controlled
by the polarity of the solvent in which the chromophore is
dissolved; a more polar solvent increases the GS state polariza-
tion, which makes the partial and/or complete ionic forms more
important.

Experiments have clearly demonstrated that the medium
influences both the molecular geometry and the electronic charge

distribution, leading thus to large effects on electronic and
vibrational terms of linear and nonlinear optical properties.17

As a consequence, although calculations on isolated molecules
are helpful, a really important new step in the calculation of
these properties is to explicitly take into account the influence
of the medium surrounding the chromophore.

Previous studies in this direction have been performed by
Albert et al.,16 even with the limits of a partial analysis done
only on the electronic terms of NLO properties, with a rather
approximated solvent model and at a semiempirical level of
calculation, and more recently by Gao and Alhambra18 who have
developed a hybrid quantum mechanical and molecular me-
chanical (QM/MM) technique to study solvent effects on BLA
and absorption energy of conjugated compounds through Monte
Carlo (MC) simulations. Another attempt to take into account
the influence of the medium surrounding the NLO molecule
has been done by Meyers et al.19 Actually, their analysis is
rather different from the previous ones, as they do not explicitly
consider solvent effects but introduce an external electric field
to qualitatively simulate these effects on nuclear geometry,
electronic structure, and finally electronic optical properties.

A more detailed and complete step beyond gas-phase calcula-
tion is taken in the present work where we examine the influence
of a continuum dielectric on both structure and electric response
functions (dipole, static polarizability,R, and first hyperpolar-
izability, â, both in their electronic and vibrational contributions)
on chromophores such as linear polyenes. In particular, for the
treatment of solvent effects we shall adopt the recent reformula-
tion, known as integral equation formalism (IEF),20-22 of the
polarizable continuum method (PCM) developed in Pisa.23-25

The theoretical methodology is outlined in section 2, while
in section 3 we present and discuss our calculation on two series
of noncentrosymmetric polyenes of the type NH2(CHdCH)nR
(n ) 1, 2), that with R) CHO (series I) and the other with R
) NO2 (series II).

2. Methodology and Computational Procedure

As already stated in the Introduction the properties which
govern the response of a molecular system to an external applied
electric field are the electronic and vibrational (hyper)polariz-
abilities. In the present paper we shall limit ourselves to analyze
the static case only, but generalizations to frequency-dependent
fields are rather immediate as we shall show in future papers
now in progress.

For the calculation of the electronic quantities, there are two
conceptually different approaches: the sum-over-states (SOS)
and the derivative methods.

The SOS method is based on the perturbation expansion of
the Stark energy. Different-order Stark energy terms are related
to optical nonlinearities on the basis of their order in the field
strength. The result is expressions for the polarizability and
hyperpolarizabilities as infinite sums over various excited states
in which the numerators contain dipole and transition dipole
moments between couples of states.

The second method, here indicated as the derivative method,
which constitutes the theoretical tool beyond the numerical
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Figure 1. Resonance structures of a prototypical push-pull system.
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results presented below, involves quantum calculations of energy
or dipole moment followed by obtaining derivatives either
numerically or analytically. The analytical approach for the
derivative method involves mathematical relations widely known
as generalized coupled perturbed Hartree-Fock (CPHF) equa-
tions, which are derived from the variational properties of the
molecular wave function.

A term which represents the interaction between the external
electric field and the instantaneous molecular dipole is added
to the ordinary Hartree-Fock one-electron potential. The
related HF equation is then expanded as a power series in this
field, of magnitudeF, and solved self-consistently order by
order. In this way field-induced electron reorganization effects
are taken into account. Finally each (hyper)polarizability is
obtained by calculating the appropriate term in the expression
for the induced dipole moment:

where the index 0 refers to the molecular permanent dipole;re

andâe are the electronic polarizability and first hyperpolariz-
ability tensors, respectively, while the subscriptsr, s, t, ... refer
to the Cartesian components of the external field.

It is immediate to see that, for a one-determinant wave
function expanded over a finite basis set, when the CPHF
equations are solved, i.e., the first (Ps) and second derivatives
(Pst) of the density matrix with respect to the field are computed,
the electronic (hyper)polarizabilities tensor components are
given by26,27

wheremr collects the integrals of therth Cartesian component
of the dipole moment operator.

Recently a PCM implementation allowing the computation
of electronic (hyper)polarizabilities in both the static and
frequency-dependent10 cases has been proposed; in this frame-
work, use is made of the CPHF and time-dependent coupled
Hartree-Fock (TDCHF) formulations, respectively. The formal
aspects of the implementation can be found in the source
papers;10 here it is sufficient to recall that, to obtain analytical
derivatives, one has to substitute the Stark energy of the
procedure in vacuo with the free energy functional,G, of the
whole solute-solvent system:

Here the tilde stresses that the related matrices contain terms
accounting for the presence of the solvent field through the
matricesj , y, andX(P). ṼNN in eq 3 is a scalar term collecting
nuclear repulsion (VNN) and the interaction (UNN) between solute
nuclear charges and the solvent field they generate. Details on
the physical and numerical bases underlying the method can
be found in the already quoted papers.

In the following we shall also report results obtained from
the random-phase approximation (RPA) method which is
formally equivalent to the CPHF procedure, both in vacuo and

in solvent, but at the same time allows a SOS-like analysis of
the relative contributions of the various excited states to
electronic response functions. For more details on the equiva-
lence between CPHF and RPA results when solvent effects are
taken into account within the IEF-PCM model, see ref 28.

In the same way that there are two major techniques for
calculation of the electronic (hyper)polarizabilities, so there are
for the vibrational components (or better for their nuclear
relaxation contributions,Rnr, andânr): the perturbation-theory
and the finite field approximation.

As for the electronic case, also here the application of
perturbation theory produces a sum-over-states expression for
the components of the vibrational (hyper)polarizability tensors
(from now on we shall skip the index nr from the relaxation
components, and indicate them simply as vibrational
terms):29,30

where once again the subscriptsr, s, t, ... correspond to the
Cartesian molecular axes. The square bracket quantities
represent sums over vibrational states of quotients in which the
numerator is a product of vibrational transition moments of
electronic properties and the denominator contains vibrational
frequencies, for example

where|k〉 is thekth vibrational wave function with energyEk

relative to the ground state whose vibrational wave function is
|0〉. The sum excludes the vibrational ground state.

There are various ways in which the vibrational transition
moments and energies can be determined. Here we shall focus
on the method, developed by Bishop and Kirtman,29,30in which
the electronic properties (M ) µ, Re, ...) are expressed in a power
series in the normal coordinates (Qa, Qb, ...):

where quadratic (and higher) order terms account for electrical
anharmonicity.

Similarly, the vibrational potential is expanded as

with the cubic and higher-order terms being the source of
mechanical anharmonicity.

Within this framework the square-bracketed components of
eq 4 can be subdivided according to order in anharmonicity;
this is usually indicated by superscriptsn and m, i.e., [ ](n,m),
where n is the order of electrical andm of mechanical
anharmonicity. When only [ ](0,0) terms are included, we have
the double-harmonic approximation (only electric first and
mechanical second derivatives with respect toQ are present)
and
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a

ωa
2 Qa

2 + (1/6)∑
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fabcQaQbQc + ... (7)

µr ) µr
0 + ∑

s

Rrs
e Fs + (1/2!)∑

st

ârst
e FsFt + ... (1)

Rrs
e ) -tr[mrP

s]

ârst
e ) -tr[mrP

st] (2)

G ) trPh + (1/2)trP (j + y) + (1/2)trP [G(P) + X(P)] +
(1/2)UNN + VNN

) trPh̃ + (1/2)trPG̃(P) + VNN (3)
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since no double-harmonic terms exist for [µ3].
In this approximation, by defining each vibrational state by

the quantum numbers associated with each of the 3N - 6 normal
modes of the system, the final expressions of the vibrational
contributions to the electric (hyper)polarizability tensor com-
ponents become (in au)

whereωa ) 2πνa is the circular frequency associated withQa

and each partial derivative is evaluated at the equilibrium
geometry.

To show the validity of the double harmonic procedure
described above when the solvent interactions are taken into
account within the IEF-PCM framework, it becomes compulsory
to do a brief digression on the formal derivation of eqs 9 and
10.

As already stressed in the previous analysis on electronic
(hyper)polarizabilities, also here the basic theoretical point which
distinguishes in vacuo from solution calculations, is the
introduction of the free energy functionalG, see eq 3, which
becomes the equivalent of the potentialV energy reported in
eq 7 when solute-solvent interactions are taken into account.31

As a final result, this leads to substituting all the quantities in
eqs 9 and 10 with the values obtained from the solvation
calculation; in this scheme both the electric properties (dipole
and polarizabilities) and the circular frequency have to be
computed as derivatives ofG with respect to the field and the
normal coordinates, respectively. In addition the latter are
adjusted to be correct for the solvated system. For brevity’s
sake we prefer to postpone the whole formal derivation of the
formula above, well-known for the isolated system but much
less theoretically stated for the solute, until the end of the paper,
in Appendix 1. Here we limit ourselves to stress some important
points.

Both eqs 9 and 10 require the computations of various electric
and energy quantities. At the beginning of the section we have
recalled that IEF-PCM manages to evaluate electronic properties
by applying the equivalent of the CPHF scheme for the solvated
system; moreover it can compute analytical gradient of the free
energy with respect to nuclear coordinates, and consequently it
is always possible to optimize the solute geometry in the
presence of the solvent.32 Regarding the latter point it is worth
recalling that the geometry optimization of PCM molecular
solutes is now particularly efficient thanks to the new procedure
introduced in the IEF-PCM scheme to obtain solute-solvent
interaction energy gradients.33 The latter are here also exploited

to numerically compute the Hessian matrix and then to evaluate
the frequenciesωa. In this way we can compute both electronic
and vibrational (hyper)polarizabilities taking into account all
the possible effects due to the presence of the continuum
dielectric on the solute geometry, its electronic charge distribu-
tion, and the vibrational motions of its nuclei.

As a different but still important preliminary note, we recall
that all the results reported below are obtained by assuming an
implicit approximation in the model, namely, that the solvent
reaction field is always equilibrated to that of the solute, also
during its vibrational motions; the latter assumption should
require some further comments; for brevity’s sake we prefer
not to report them here, but to refer the interested reader to the
already quoted review, as containing some original observations
on the subject,24 and to two more specific papers.34

Before passing to the second, alternative procedure, a last
important point needs to be considered in treating systems in
solutions, namely, the problem of local field effects. All the
relations derived above are analytically exact if the external
applied field can be considered uniform; actually this external,
macroscopic electric field is altered by its passage through the
medium, and this change is reflected by the incorporation of
“local field factors” into the relation between the macroscopic
and the microscopic field really acting on the local position of
the molecule:

where f is a 3 × 3 tensor whose components are the “local-
field factors”.

In determining the local field one must, in general, take into
account the depolarizing field acting on any particular molecule
due to the influence of the surrounding molecules. This is a
quite challenging task which has received the attention of
theoreticians over many decades, although analytical results are
available in only a few simple cases. Very recently, two new
techniques have been presented, one analytical,35 as generaliza-
tion of the Onsager reaction field, and the other numerical.36

The latter constitutes a simple but effective procedure to
computef for molecular solutes of general shape in the IEF
framework, in order to analyze the implications this additional
solvent effect has on the electronic static (hyper)polarizabilities
of various molecular solutes. A parallel analysis should surely
be done for the vibrational contributions too. In the present
paper we only limit to stress the existence of this problem, not
considering its numerical effects; their detailed treatment will
be the subject of a future communication.

An alternative method to calculate vibrational (hyper)-
polarizabilities, above indicated as finite field approximation,
has been recently developed by Bishop et al.37 This method
requires no direct knowledge of the electronic-property deriva-
tives, force constants, etc. All that is replaced by a set of much
simpler finite-field calculations with and without allowing nuclei
to relax to equilibrium position when an external static electric
field F is present.

If we denote the equilibrium molecular geometry with a static
electric field present byRF and without the field byR0, then
for any electronic propertyM we may define

(31) Tomasi, J.; Mennucci, B.; Cammi, R.; Cossi, M. InQuantum
mechanical models for reactions in solutionin Computational Approaches
to Biochemical ReactiVity; Naray-Szabo, G., Warshel, A., Eds.; Kluwer
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and

For smallF, both of these quantities may be fitted to a Taylor
expansion in the field.

In particular, whenM ) µ, eq 11 is reduced to eq 1 reported
above for the electronic contribution to the (hyper)polarizabili-
ties, while eq 12 becomes (see also eq 24) of Appendix 1)

The coefficients here are intrinsically different from those of
eq 1. They now contain the vibrational contribution due to
relaxation of the molecular geometry caused by the applied static
field. These contributions are those previously called the nuclear
relaxation components of the vibrational (hyper)polarizabilities.
It is easy to see that

where once again the superscript v indicates only the relaxation
part of the vibrational contribution. Once the coefficient in eq
13 have been obtained by finite field fitting techniques, the
relaxation component of the static vibrational (hyper)polariz-
abilities can be found from eq 14, together with the known static
electronic values.

The vibrational quantities obtained in this way include the
lowest-order nonvanishing perturbation terms of each type that
appear in the Bishop-Kirtman treatment reported above. In
particular we have

where we have exploited the already used formalism indicating
the various anharmonicities.

To make a more reliable comparison between quantities
obtained within the finite-field procedure and those derived from
the double harmonic approximation of the perturbative method
(see eqs 9 and 10), it is worth considering a further application
of eq 12, this time in terms of the electronic polarizability tensor
re. By limiting the related Taylor expansion to the first order
in the field, we can write

with

The subscriptω f ∞ denotes that the vibrational term is
obtained in the “infinite frequency” limit, which means that any
fields used to determineRrs

e in the left-hand side of eq 16 are
distinct from the structure-changing fieldF and can be
considered to oscillate with infinite frequency, so that they
cannot affect molecular geometries. It may be noted that the
same type of contribution that appears in the static equivalents

appears in the infinite frequency approximation but with
different numerical factors (including zero); in particular for
the diagonal termârrr

v we have

From eq 18 it immediately follows that the right quantity to be
compared with the double-harmonic value of the vibrational first
hyperpolarizability of eq 10 is the infinite frequency
ârst

v (-ω;ω,0)ωf∞ and not the static one deriving from eq 14, as
the latter contains further contributions from both electric and
mechanical anharmonicity (see eq 15).

More details on this point will be analyzed in the numerical
section, where we shall report numerical results for the full set
of quantities presented above.

As a final note we recall that the introduction of the solvent
effects within this scheme does not lead to any basic changes;
the whole procedure remains valid if all the electric properties,
µ, re, andâe, as well as both the zero-field and the field-relaxed
solute geometries are computed in the presence of the reaction
field due to the continuum dielectric.

3. Numerical Results and Discussion

In this section we shall present and discuss some numerical
results regarding static electronic and vibrational (hyper)-
polarizabilities of two series of noncentrosymmetric polyenes:
NH2(CHdCH)nR (n ) 1, 2), with R) CHO (series I) and with
R ) NO2 (series II). As the molecules are taken to lie in the
xy-plane (actually the exact planarity is lost in solution) with
the long axis oriented along thex-axis, the dominant components
areRxx for the polarizability, andâxxx for the first hyperpolar-
izability; in the following our analysis will be limited to these
diagonal components only.

All the calculations have been performed at the SCF level
with a basis set equal to the Dunning/Huzinaga valence double-
ú38 as given by Gaussian94 code.40 The choice of basis set in
the calculation of (hyper)polarizabilities is quite a delicate point.
It is in fact well known that these quantities require extended
basis sets including polarization and diffuse functions; to justify
our choice of a rather limited basis set, we remark that we are
here mainly interested in the analysis of relative quantities and
of general trends rather than in the evaluation of the best (hyper)-
polarizability values. As a matter of fact previous calculations39

on series II have shown that the CPHF calculation with the use
of a quite small basis (in that work 6-31G) underestimates both
dipole and first hyperpolarizability (nothing is reported for the
polarizability) as compared to results with extra diffuse func-
tions, but it reproduces theµ-value to 98% of that for
6-31G+1p1d, and the large part of theâ-diagonal value. In
addition it has been seen that the basis set effect generally
becomes small with the increase of molecular size; hence, for
the two largest components of both series, the eventual error
due to the limited BS is even less important.

All the calculations in solution have been performed using
the IEF version of the PCM method. Within this framework,

(38) Dunning, T. H., Jr.; Hay, P. J. InModern Theoretical Chemistry;
Schaefer, H. F., III, Ed.; Plenum: New York, 1976; pp 1-28.

(39) Tsunekawa, T.; Yamaguchi, K.J. Phys. Chem.1992, 96, 10268.
(40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill P. M. W.; Johnson

B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.;
Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V.
G.; Ortiz, J. V.; Foresman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A.Gaussian 94, Revision D.4;
Gaussian, Inc.: Pittsburgh, PA, 1995.

(∆M)R0
) M(F,R0) - M(0,R0) (11)

(∆M)RF
) M(F,RF) - M(0,R0) (12)

(∆µr)RF
) ∑

s

a1(r,s)Fs + (1/2!)∑
st

b1(r,s,t)FsFt + ... (13)

a1(r,s) ) Rrs
v + Rrs

e

b1(r,s,t) ) ârst
v + ârst

e (14)

Rrs
v ) [µ2](0,0)

ârst
v ) [µR](0,0) + [µ3](1,0) + [µ3](0,1) (15)

(∆Rrs
e )RF

) ∑
t

b2(r,s,t)Ft + ... (16)

b2(r,s,t) ) ârst
v (-ω;ω,0)ωf∞ + ârst

e (17)

ârrr
v (-ω;ω,0)ωf∞ ) (1/3)[µR] static

(0,0) (18)
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the molecular solute is embedded in a cavity in the dielectric
medium defined in terms of interlocking spheres centered on
the solute nuclei, with radiiRk equal to 1.2 times the corre-
sponding van der Waals valuesRk

vdw; namely, for our solutes
we haveRH ) 1.44 Å, RC ) 2.04 Å, RO ) 1.80 Å, andRN )
1.92 Å. The solvation calculations are performed for a medium
having dielectric constantε ) 78.5 corresponding to the static
dielectric constants of liquid water at 298 K.

All the geometry optimizations, both in vacuo and in solution,
with and without applied external field, have been performed
by exploiting the G94 code, where IEF analytical gradients have
been recently implemented.33 On the contrary, all the electronic
properties,Re and âe, and the vibrational ones (in the ap-
proximation of double harmonicity, see eqs 9 and 10) are
computed with GAMESS code,41 in which the IEF-PCM version
of CPHF procedure has also been implemented.22

Regarding the geometry optimization with applied external
fields, we also add that the exploited algorithm is the Berny
algorithm using redundant internal coordinates which eliminates
the rotational degrees of freedom, no longer free, and conse-
quently automatically solves the problem of possible reorienta-
tion of the molecule due to the external field (this problem has
been stressed in many studies; see, e.g., Martı´ et al.42).
Numerical evidence of this statement will be given below.

In Tables 1 and 2 we report the results obtained for the static
electronic and vibrational (in the double harmonic approxima-
tion) polarizability and hyperpolarizability for the two series
of molecules both in vacuo and in solution.

To make our analysis clearer, the discussion on the results
reported in Tables 1 and 2 will be divided into three parts,
focused on geometry effects, electronic (hyper)polarizability
terms, and vibrational components.

3.1. Geometry Effects. As reported in the Introduction, the
extent of geometric distortions induced by solvent or an external
electric field can be characterized by bond length alternation
(BLA), defined as the average difference in length between
single and double bonds in the conjugated pathway (it is by
convention taken as positive in the neutral polyene-like form).

In Tables 3 and 4 we report the bond lengths of the first
element of both series at the geometries optimized in vacuo
and in solution, while in Table 5 the BLA values for the second
terms of each series of molecules (for the first terms it is not
possible to define a BLA as the conjugated path is limited).

The two main aspects to be pointed out are the effects due
to the nature of substituents and, more important, to the presence
of the solvent.

From both Tables 3 and 4 it results that more polar D-A
substituents (i.e., molecules of series II) act to reduce the length
of the single bonds and to increase the length of the double
bonds. The same effect, even if largely amplified, is given by
the presence of the solvent; in the latter case the BLA decreases
from 0.1067 to 0.0704 for NH2(CHdCH)2CHO, and from
+0.0917 to-0.0061 for NH2(CHdCH)2NO2, passing from gas
phase to aqueous solution.

This large solvent effect on equilibrium geometries is in good
accord with the results obtained by Gao and Alhambra,18 even
if in this work a completely different model is used to represent
the solvent molecules (i.e., MC simulations) and a QM/MM
level of calculation is performed. In this paper, limited to series
I (for the second term they use the doubly substituted N(CH3)2

as donor group), the authors find, for the first term, a decrease
of the single CC bond length on the order of 0.023 Å and an

(41) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.J. Comput. Chem.
1993, 14, 1347.

(42) Martı́, J.; Andrés, J. L.; Bertra´n, J.; Duran M.Mol. Phys.1993, 80,
625.

Table 1. Static Electronic and Vibrational (Hyper)polarizabilities
(au) of H2N(CHdCH)nR (with R ) CHO, NO2 andn ) 1, 2) in
vacuoa

CHO NO2

n ) 1 n ) 2 n ) 1 n ) 2

Rrr
e 70.57 140.51 71.32 146.73

Rrr
v 21.32 39.81 21.09 43.90

Rrr
ev 91.89 180.32 92.41 190.63

ârrr
e -398.7 -1437.6 -490.4 -1893.7

ârrr
v -642.0 -2489.1 -922.6 -3846.7

ârrr
ev -1040.7 -3926.7 -1413.0 -5740.4

a Electronic components are obtained from CPHF procedures, while
vibrational terms are computed from eqs 9 and 10 of the text.

Table 2. Static Electronic and Vibrational (Hyper)polarizabilities
(au) of H2N(CHdCH)nR (with R ) CHO, NO2 andn ) 1, 2) in
Watera

CHO NO2

n ) 1 n ) 2 n ) 1 n ) 2

Rrr
e 103.03 231.23 122.04 319.43

Rrr
v 60.67 174.81 123.87 1003.44

Rrr
ev 163.70 406.04 245.91 1322.87

ârrr
e -899.9 -4701.3 -1227.2 -1928.4

ârrr
v -2259.3 -17125.2 -5458.0 -12675.5

ârrr
ev -3159.2 -21826.5 -6685.2 -14603.9

a Electronic components are obtained from CPHF procedures, while
vibrational terms are computed from eqs 9 and 10 of the text.

Table 3. Bond Lengths (Å) of H2N(CHdCH)R in Vacuo and in
Watera

CHO NO2

vacuum water vacuum water

RXY 1.2284 1.2506 1.2478 1.2696
RCX 1.4543 1.4304 1.4216 1.3721
RCC 1.3511 1.3696 1.3494 1.3809
RCN 1.3664 1.3448 1.3552 1.3236

a If R ) CHO, X ) C and Y) O; otherwise, when R) NO2, X )
N and Y ) O.

Table 4. Bond Lengths (Å) of H2N(C4HdC3HC2HdC1H)R in
Vacuo and in Watera

CHO NO2

vacuum water vacuum water

RXY 1.2274 1.2477 1.2464 1.2830
RC1X 1.4608 1.4385 1.4311 1.3540
RC1C2 1.3483 1.3645 1.3440 1.3949
RC2C3 1.4507 1.4329 1.4413 1.3896
RC3C4 1.3499 1.3661 1.3550 1.3966
RCN 1.3728 1.3526 1.3644 1.3229

a If R ) CHO, X ) C and Y) O; otherwise, when R) NO2, X
) N and Y ) O.

Table 5. Bond Length Alternation (BLA) (Å) of H2N(CHdCH)2R
in Vacuo and in Water

vacuum water

CHO 0.1067 0.0704
NO2 0.0917 -0.00614
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increase of the double bond length of 0.021 Å (to be compared
with 0.024 and 0.019 Å of our calculations), while for the second
term a decrease of 0.036 Å in the BLA value (exactly equal to
our value). On the contrary, in the other related paper on solvent
effects by Albert et al.,16 the change in geometry of the similar
(CH3)2N(CHdCH)4CHO molecule passing from vacuum to
water is much less important; the computed decrease of BLA
is only 0.012 Å. As the authors themselves observe, this small
solvent effect is maybe due to the use of a spherical cavity,
which for such extended solutes is clearly inadequate, and also
to the truncation of the multipole expansion describing the solute
charge distribution at the dipole term. These two evident
limitations are completely absent in our model where a
molecular-shaped cavity is used and a full description of the
solute charge distribution, without any approximation, is
exploited.

For completeness’ sake, we add that many other data obtained
for similar D-A polyenes both experimentally, see for example
ref 17a, and theoretically, see Cho43 for a very recent study,
can further confirm our results of an evident reduction of the
BLA due to the presence of the polar solvent.

In addition, data reported in Table 5 clearly show that, as
one might expect, the presence of a polar solvent like water
induces a migration of electronic charge distribution along the
molecular axis from the D to A group; in this way the electronic
structure of the molecular system, which in the gas phase is
well characterized by a polyene-like structure only, in solution
contains a large contribution also from the partially charge-
separated cyanine-like form: in NH2(CHdCH)2NO2 in water
the BLA becomes almost zero, exactly as in an ideal cyanine
structure.

The same conclusions can be reached in a different way, by
taking into account the changes on the net charges of the various
chemical groups present in the molecule, when passing from
gas phase to solution. In Table 6 we report the total dipole
moment and the Mulliken net charges on the D-A groups as
well as on the intermediate CH groups both in vacuo and in
solution.

The most evident result of data reported in Table 6 is that
the A group, which in vacuo shows significant partial negative
charges in both series, in solution presents a positive charge,
with the only exception of the second term of series I where
the A net charge is almost zero. This behavior once again shows
that in solution the cyanine-like structure assumes a much more
important role and becomes the main one for series II. The
electron migration toward the A group is reflected also in the
net charges of the intermediate CH groups which all increase
in magnitude passing from vacuum to aqueous solution.

3.2. Electronic (Hyper)polarizabilities. The larger mobility
of the electronic charge in the presence of the solvent we have
derived from the analysis on geometrical changes of the previous
subsection is also made evident by the significant increase in
the electronic polarizability passing from gas phase to solution.
This is shown in Table 7 in which we report the percent variation
of electronic and vibrational polarizability and first hyper-
polarizability of both series of molecules.

Limiting our attention to the electronic data of Table 7 (the
vibrational part will be analyzed in the next subsection), we
can also observe another interesting solvent effect, maybe less
predictable. The first hyperpolarizabilityâe which, in both terms
of the series I, presents significant increments going from gas
phase to solution (from 126% to 227%), in series II shows an
unexpected behavior with a very small increase in the solvated
NH2(CHdCH)2NO2 molecule; hereâe is only 2% larger than
the vacuum result. This result, which is completely different
from those of the other computed molecules and also from the
usual values reported in the literature for other push-pull
systems,44,45needs a more detailed analysis. To do that, in Table
8 we report the RPA results of the lowest allowed single
excitation from the GS for all the molecules both in vacuo and
in solution.

(43) Cho, M.J. Phys. Chem. A1998, 102, 703. For a coherent comparison
with our results it is worth noting that, in this paper, the author, following
a previous related paper by Kim, H.-S.; Cho, M.; Jeon, S.-J.J. Chem. Phys.
1997, 107, 1936, adopts a convention on the sign of the BLA parameter
opposite ours, i.e., negative values for the neutral canonical resonance form.

(44) Mikkelsen, K. V.; Luo, Y.; A° gren, H.; Jørgensen, P.J. Chem. Phys.
1994, 100, 8240.

(45) Di Bella, S.; Marks, T. J.; Ratner, M. A.J. Am. Chem. Soc.1994,
116, 4440.

Table 6. Ground-State Dipole Moment (D) and Mulliken Net Charges (au) of Rs(X1dX2sX3dX4)sNH2 (with R ) CHO, NO2) Both in
Gas Phase and in Aqueous Solution

group charges (au)

µr R X1 X2 X3 X4 NH2

CHO(g) -6.3179 -0.1555 -0.0531 +0.2699 -0.0612
CHO(aq) -9.2531 -0.2602 -0.1131 +0.3475 +0.0258
CHO(g) -7.7909 -0.1605 -0.0571 +0.1037 -0.0381 +0.2339 -0.0820
CHO(aq) -12.0932 -0.2599 -0.1253 +0.1769 -0.0935 +0.3047 -0.0029
NO2(g) -8.1474 -0.4420 +0.0705 +0.3925 -0.0211
NO2(aq) -12.3971 -0.6449 +0.0684 +0.4582 +0.1183
NO2(g) -10.1829 -0.4492 +0.0514 +0.2323 -0.0569 +0.2815 -0.0590
NO2(aq) -19.6363 -0.7548 +0.0296 +0.2807 -0.0656 +0.4059 +0.1041

Table 7. Percent Variations of Electronic and Vibrational
Contributions of Static (Hyper)polarizabilities of H2N(CHdCH)nR
Passing from the Gas Phase to the Aqueous Solution:∆M )
100[M(aq) - M(gas)]/M(gas)

CHO NO2

n ) 1 n ) 2 n ) 1 n ) 2

δRrr
e +46 +64 +71 +118

δRrr
v +185 +339 +487 +2186

δârrr
e +126 +227 +150 +2

δârrr
v +152 +588 +492 +230

Table 8. Dipole Variations (D) with Respect to the Ground-State
Value, ∆µr

gn, Transition Energies (eV),∆Egn, and Oscillatory
Strength (au),f, for the Lowest Allowed Single Excitation of
H2N(CHdCH)nR Molecules Both in Gas Phase and in Aqueous
Solution

f ∆µr
gn ∆Egn

CHO(1)(g) 0.784 -2.017 6.280
CHO(1)(aq) 0.989 -1.366 5.369
CHO(2)(g) 1.283 -3.446 5.257
CHO(2)(aq) 1.523 -2.522 4.154
NO2(1)(g) 0.445 -4.040 5.593
NO2(1)(aq) 0.725 -2.331 4.364
NO2(2)(g) 0.967 -5.448 4.834
NO2(2)(aq) 1.284 -0.859 3.287
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As already reported in the previous section on methodology,
the RPA procedure, even if formally equivalent to CPHF, allows
one to perform an analysis of the electronic (hyper)polarizabili-
ties in terms of sums of contributions from different electronic
excited states (SOS). A very simple scheme which is very
useful for interpretative purposes, even if not reliable from a
quantitative point of view, limits the SOS expression to a unique
excited state. In the resulting two-state approximation (TSA),
the static diagonal electronic polarizability and first hyper-
polarizability are given by

whereµr
gn is the r component of the dipole transition moment

between the ground and excited states,∆Egn is the corresponding
excitation energy,∆µr

gn is the change in ther component of the
dipole moment between the ground and excited states, andfgn

) 2µgn
2 ∆Egn/3 is the oscillatory strength (in the equations

above we have assumed that the transition dipole moment is
completely described by itsr component, i.e.,µgn

2 = (µr
gn)2.

In Table 9 we report the static (hyper)polarizability values
obtained both in vacuo and in solution by applying eqs 19 and
20.

The main point to be stressed is that the TSA only gives
qualitative results; the very small discrepancies between TSA
and analyticalRe andâe values found for some molecules are
almost fortuitous; in one case TSA even overestimates the
analytical âe. Anyway, TSA establishes an important link
between electronic properties and spectroscopic quantities.

A quite evident result derivable from data of Table 9 is that
the important increase of the polarizability in solution is largely
due to the red shift of the transition energy; in both the series
the δ∆Egn is around 1 eV (∼8000 cm-1). This bathochromic
shift, which has also been experimentally observed in similar
push-pull systems,46 corresponds to a situation where, through
the interaction with the solvent reaction field, the first excited
state is preferentially stabilized with respect to the GS being
its dipole moment larger than that in the GS. Once again, due
to the strong link present in theseπ-conjugated systems between
geometry and electronic structure, the same conclusions can be
reached from considerations on BLA changes: the red shift in
the transition can take place as the GS in solution becomes
described by equal contributions from the polyene form and

the partially charge-separated form, i.e., the cyanine limit (and
in fact the largest shift,δ∆Egn ) 1.54 eV, is given by
NH2(CHdCH)2NO2 for which a very small BLA is also found).

In the RPA-SOS framework also the unusual behavior found
for theâe of NH2(CHdCH)2NO2 in solution assumes a clearer
meaning. From Table 8, it is evident that the most irregular
data regarding this molecule is the very small change in the
transition dipole moment from the GS to the first allowed excited
state in solution with respect to the parallel value in vacuo
(-0.859 D vs-5.448 D); due to the proportionality ofâe and
∆µr

gn, the final result is the observed small increase of the first
hyperpolarizability of the solvated molecular system with respect
to the value computed in vacuo. On the contrary, this kind of
behavior is not shown by the polarizability which is not related
to ∆µr

gn; as a matter of fact,Re presents a standard large
increase also for NH2(CHdCH)2NO2.

To better understand this phenomenon, we recall that the
excited state can be almost exclusively described by one basic
excitation (typically highest occupied molecular orbital (HOMO)
f lowest unoccupied molecular orbital (LUMO)); for the same
reason the TSA is often referred to as the two-level approxima-
tion. In this picture it is interesting to report in Figures 2-5
the plot of the two involved molecular orbitals both in vacuo
and in solution (for all the molecules analyzed in the present
paper the HOMO-LUMO transition is aπ f π* transition).

(46) Reichardt, C.SolVents and SolVent Effects in Organic Chemistry;
VCH: Wenheim, 1990.

Table 9. Static Electronic Polarizabilty and First Polarizability
(au) in the Two-Level Model for H2N(CHdCH)nR Both in the Gas
Phase and in Aqueous Solutiona

Rrr
e ârrr

e

CHO(1)(g) 39.22 (55.6) -269.7 (67.6)
CHO(1)(aq) 69.98 (67.9) -381.2 (42.4)
CHO(2)(g) 94.03 (66.9) -1319.8 (91.8)
CHO(2)(aq) 182.2 (78.8) -2368.6 (50.4)
NO2(1)(g) 31.47 (44.1) -487.0 (99.0)
NO2(1)(aq) 84.26 (69.0) -964.3 (78.6)
NO2(2)(g) 91.38 (62.3) -2206.5 (116.5)
NO2(2)(aq) 263.48 (82.5) -1475.2 (76.5)

a Values in parentheses refer to the percentage of the property with
respect to its CPHF total value.

Rrr
e ) 2

(µr
gn)2

∆Egn
) 3

fgn

(∆Egn)2
(19)

ârrr
e ) 4

(µr
gn)2∆µr

gn

(∆Egn)2
) 6

fgn∆µr
gn

(∆Egn)3
) 2

Rrr
e ∆µr

gn

∆Egn
(20)

Figure 2. xzplane contour map of HOMO for NH2(CHdCH)2NO2 in
vacuo.

Figure 3. xzplane contour map of LUMO for NH2(CHdCH)2NO2 in
vacuo.
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From Figures 2 and 4 we can see that the general form of
the HOMO does not change too much from gas phase to
solution, and in fact the coefficients of the two MOs relative to
the atomic functions centered on the two N atoms of the D-A
groups are very similar (qND ) ∑ici

2 (ND) is 0.178 au in vacuo
and 0.111 au in solution, whereasqNA ) ∑ici

2 (NA) is 0.000 au
in vacuo and 0.024 au in solution). Things are not so similar
for the LUMO; Figures 3 and 5 present in fact a rather different
aspect relatively to the N of the amine group whoseqND value
goes from 0.070 au in vacuo to 0.116 au in solution. This means
that in the charge-transfer excitation HOMO-LUMO, the
variation of theqND is -0.108 au in vacuo and almost zero in
water (the parallel value ofδNA is 0.253 au in vacuo and 0.269
au in solution); consequently, the dipole moment change passing
from the GS to the excited state, which in vacuo presents a
large value, is very small in solution, as small is the increase
of âe.

3.3. Vibrational Hyperpolarizabilities. Going back to
Tables 1 and 2, what remains to be analyzed is the vibrational
component of hyperpolarizabilities, and the effects the solvent
induces on this quantity. Before beginning the discussion on
results it is worth recalling that the vibrational term we shall
consider here contains the nuclear relaxation term only; as
already stressed in the Introduction the curvature term due to
the field-induced changes in the potential energy surface and

including zero-point vibrational correction (ZPC), will not be
considered in the present paper.

As a first element of analysis, in Table 10 we report the ratios
between vibrational and electronic (hyper)polarizabilities both
in vacuo and in solution for all the molecules of the two series
presented in the previous subsections.

Regarding static polarizabilities, previous calculations on
other conjugated systems in vacuo47 have givenRv/Re ratios
ranging from 0.1 to 0.4; in Table 10 a value of about 0.3 is
computed for all four molecules in vacuo. On the contrary, no
comparisons with data from the literature can be made for
solvated systems, as never studied before. Anyway, the results
of Table 10 when combined with those of Table 2 show that
the solvent effects induce either a large increase in the absolute
vibrational contribution and, even more evident, a net larger
increase of the latter with respect to the electronic component;
in series II the ratioRv/Re in solution is greater than 1, and the
vibrational component becomes dominant.

A similar analysis can be done on the first hyperpolarizability;
also here vacuum results are in good accord with previous
calculations on conjugated systems; for example, for
NH2(CHCH)2NO2 Kirtman and Champagne find a ratio of 2.20
with a RHF/6-31G calculation48 to be compared with 2.03 of
Table 10. Once more, solvent effects lead to large increases in
the relative importance of the vibrational contribution with
respect to the electronic one multiplying the gas phase value of
âv/âe by factors from 1.5 (in the first term of series I) to 2 (in
the second term of series II).

Once the most evident aspects of the computed numerical
results have been so pointed out, the further step to be done is
their analysis. To do that, it is worth going back to eqs 9 and
10 giving the formal relations between (hyper)polarizabilities
and normal modes of the molecule. As we have done in the
TSA approximation of electronic contributions where we have
defined a single excited state able to give a reliable description
of the (hyper)polarizabilities, also here we can hope to find a
single modeQ* (corresponding to frequencyω*) which plays
the most important role in the determination ofRv andâv.

Actually, the analysis on normal modes is not as easy as those
on electronic states, and unfortunately it is not possible to find
a single mode which could reproduce the full vibrational
property at a good qualitative level; two or more modes have
then to be considered.

In Table 11 we report the frequency, the IR intensity, and
the relative contribution toRv and âv obtained in the double
harmonic approximation for the two modes which contribute
most to vibrational (hyper)polarizabilities of the molecules of
series I both in vacuo and in solution.

What results from the data of Table 11 is that for the first
molecule in vacuo the two main modes globally reproduce 40%
of total Rv and 62% ofâv; the remaining is partitioned among
many other modes with contributionse5%. In solution, besides

(47) Reference 9b,c.
(48) Reference 9f.

Figure 4. xzplane contour map of HOMO for NH2(CHdCH)2NO2 in
solution.

Figure 5. xzplane contour map of LUMO for NH2(CHdCH)2NO2 in
solution.

Table 10. Ratios between Vibrational and Electronic
(Hyper)polarizabilities of H2N(CHdCH)nR in Gas Phase and in
Aqueous Solution

CHO NO2

n ) 1 n ) 2 n ) 1 n ) 2

gas aq gas aq gas aq gas aq

Rrr
v /Rrr

e 0.302 0.589 0.283 0.756 0.296 1.015 0.299 3.145

ârrr
v /ârrr

e 1.610 2.511 1.731 3.643 1.881 4.448 2.031 6.573
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the two equivalents of modes 1 and 2 in vacuo which now
globally give 55% ofRv and 69% ofâv, there appears another
rather important mode of very low frequency (591.57 cm-1),
not reported in Table 11, contributing 8% ofRv and 13% ofâv.

Modes 1 and 2, both in vacuo and in solution, contain a main
component related to CdC and CsC stretching of the chain,
respectively. This is shown in Figures 6-9, in which we plot
the drawings of the two modes in mass-weighted Cartesian
coordinates.

The changes induced by the solvent are evident on both
frequencies and IR intensities; what we observe is a significant
decrease of frequency (∼117 cm-1) and an important increase

in IR intensity (by a factor of 2.5) for mode 1, and, for mode
2, a small increase of frequency (∼6 cm-1) accompanied by a
very large increase in IR intensity (by a factor of 8.5). Let us
try to analyze these data in a more detailed way, as they can
give useful information for a more physical description ofRv

and âv. The direct relation between polarizability and spec-
troscopic data is explicitly shown in eq 9 if we recall that IR
intensity is proportional to (∂µ/∂Q)2; the parallel relation forâv

is a little more complex as it also involves Raman intensities,
but for our scope we can limit our consideration to the still
present proportionality betweenâv and ∂µ/∂Q, and then IR
intensities.

In a very qualitative picture, the observed behaviors can be
related to the changes in the CC bond lengths reported in Table
3 as well as to the transfer of electronic charge from the donor
to the acceptor group shown in Table 6. As in solution we
observe a lengthening of the double bond and a parallel
shortening of the single CC bond, it is well acceptable that the
frequencies will be smaller for mode 1 and larger for mode 2,
the two modes related to CdC and CsC stretching, respectively.
On the other hand, as the additional motion associated with the
main CdC stretching in mode 1 involves different groups
passing from vacuum to solution, namely, NH2 and CHO, the
IR intensity, as well as the contributions toRv andâv, in solution
will be larger as larger is the dipole variation related to
distortions of CHO in solution than of NH2 in vacuo.

For mode 2, in which the groups involved remain almost
equivalent in vacuo and in solution, the large amplification of
IR intensity (and consequently of the contribution of this mode
to (hyper)polarizabilities) passing to the solvated system is
clearly related to effects of electron transfer toward CHO. In
fact, as the main distortion characteristic of this mode, C-C
stretching, involves the C atom of the CHO group, the related
dipole variations and IR intensity will be largely amplified in
solution.

A parallel analysis can be done on the second term of the
same series. Also in this case two are the main modes which
globally give 35% ofRv and 72% ofâv in vacuo, and 62% of
Rv and 74% ofâv in solution. However, for this larger molecule,
the almost complete equivalence found before for both modes
in vacuo and in solution does not appear any more, or better it
is not fulfilled in mode 2. Mode 1 is not changed too much
passing from the gas phase to solution; only the related
frequency is decreased∼150 cm-1 for the same reason, inducing
the parallel decrease observed for mode 1 in the previous
molecule. The drawings of the two modes, both in vacuo and
in solution, are reported in Figures 10-13.

As can be seen from Figures 11 and 13, mode 2 in vacuo
mainly involves a stretching of the central single CsC bond,
while in solution this stretching is shifted on the terminal
CsC(HO) bond, with also a small contribution from the first
CdC bond contraction. Once again, this change can be

Table 11. Spectroscopic and (Hyper)polarizability Contributions
of the Two Main Normal Modes for Series I (NH2(CHdCH)nCHO,
with n ) 1, 2) Both in Vacuo and in Solutionsa

freq IR Rrr
v ârrr

v

Mode 1
n ) 1(g) 1840.63 21.08069 6.85 (32) -301.83 (47)
n ) 1(aq) 1723.97 53.81693 18.95 (31) -1001.4 (44)
n ) 2(g) 1825.65 33.23892 10.61 (27) -1355.1 (54)
n ) 2(aq) 1676.11 116.20251 44.00 (25) -5498.1 (32)

Mode 2
n ) 1(g) 1277.99 2.51939 1.69 (8) -97.5 (15)
n ) 1(aq) 1284.37 21.48950 14.83 (24) -629.7 (25)
n ) 2(g) 1297.46 4.73956 3.21 (8) -450.3 (18)
n ) 2(aq) 1228.77 88.04280 65.01 (37) -7175.4 (42)

a Frequencies are in cm-1, IR intensities in D2/(amu Å2). Values in
parenthese refer to the percentage of the contribution with respect to
the double-harmonic vibrational value reported in Tables 1 and 2.

Figure 6. Drawing of normal mode 1 of NH2(CHdCH)CHO in vacuo.

Figure 7. Drawing of normal mode 2 of NH2(CHdCH)CHO in vacuo.

Figure 8. Drawing of normal mode 1 of NH2(CHdCH)CHO in
solution.

Figure 9. Drawing of normal mode 2 of NH2(CHdCH)CHO in
solution.
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explained in terms of the important changes induced by the
solvent on the bond lengths and on the related BLA reported in
Tables 4 and 5, as well as on the electronic charge distribution
shown in Table 6. In solution, in fact, the CC bond pattern
partially loses the clear structure characteristic of the system in
vacuo, and differences between single and double bonds become
less evident. As a consequence the motions of the various CC
groups can be changed and/or mixed together to give different
resulting normal modes. In addition, the great effects that CHO
distortions can induce on dipole derivatives in solution lead to
a migration of the effective motions toward the acceptor group
and to an IR intensity which is larger by a factor of∼19 with
respect to that of mode 2 in vacuo.

The parallel analysis on the other group of molecules (series
II) is complicated by various elements; first the number of
normal modes which contribute in a significant way increases
by at least one, and second, the whole description loses the clear
correspondence between gas phase and solution results found
for the previous series. In this series in fact, the solvent effects
on geometry, i.e., BLA, and electronic charge distribution are

so large that the relative importance of the various modes in
terms ofRv and âv contributions completely changes passing
from the gas phase to solution. From a different point of view,
we can say that what was observed as a secondary effect in the
first series, i.e., structural differences between vacuum and
solution modes which increase in the larger term of the series,
is here so amplified to become the key aspect. Let us try to
better understand this point by limiting our analysis to the mode
giving the most important contribution ofRv andâv.

In Table 12 we report frequency, IR intensity, and (hyper)-
polarizability contributions of this main mode for each term of
the series both in vacuo and in solution, and in Figures 14-17
we plot the related drawings.

In the smaller molecule, the correspondence of the modes
for gas phase and solvated systems is still present, and both
mainly involve a C-N(O2) stretching; the only important
changes to be stressed are on the frequency which decreases

Figure 10. Drawing of normal mode 1 of NH2(CHdCH)2CHO in
vacuo.

Figure 11. Drawing of normal mode 2 of NH2(CHdCH)2CHO in
vacuo.

Figure 12. Drawing of normal mode 1 of NH2(CHdCH)2CHO in
solution.

Figure 13. Drawing of normal mode 2 of NH2(CHdCH)2CHO in
solution.

Table 12. Spectroscopic and (Hyper)polarizability Contributions
of the Main Normal Mode for Series II (NH2(CHdCH)nNO2, with n
) 1, 2) Both in Vacuo and in Solutionsa

mode 1

freq IR Rrr
v ârrr

v

n ) 1(g) 1406.18 3.97176 6.03 (29) -485.1 (53)
n ) 1(aq) 1168.09 82.17219 68.92 (56) -2920.2 (54)
n ) 2(g) 1366.06 25.47721 14.87 (34) -1275.0 (33)
n ) 2(aq) 863.93 279.33417 424.01 (42) -6408.3 (51)

a Frequencies are in cm-1, IR intensities in D2/(amu Å2). Values in
parenthese refer to the percentage of the contribution with respect to
the double-harmonic vibrational value reported in Tables 1 and 2.

Figure 14. Drawing of normal mode 1 of NH2(CHdCH)NO2 in vacuo.

Figure 15. Drawing of normal mode 1 of NH2(CHdCH)NO2 in
solution.

Figure 16. Drawing of normal mode 1 of NH2(CHdCH)2NO2 in
vacuo.
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∼240 cm-1, and on IR intensity which on the contrary increases
by a factor of∼20 passing from vacuum to solution. This large
solvent effect is again strongly related to changes in C-N(O2)
bond length (for which we obtain a decrease of 0.033 Å in
solution) and to the charge transfer from the donor to the
acceptor which leads to large dipole derivatives, and hence large
IR intensities andRv andâv contributions, when distortion of
the NO2 group is possible.

The latter effect is particularly evident in the second molecule
of the series. Here the stretching/contraction motions of the
conjugated chain which typically contribute most to vibrational
(hyper)polarizabilities of these molecules, as we have seen in
the other series, are substituted by other modes passing from
gas phase to solution. As a result, the new main mode of the
solvated system becomes strongly related to internal distortions
of the NO2 group, and the frequency goes from 1400 cm-1 in
gas phase to 864 cm-1 in solution. This solvent-induced shifting
of the effective motions toward the acceptor group is then further
shown in the other two important modes (not reported in Table
12) giving globally 41% ofRv and 62% ofâv (the sum of the
main contributions toâv can be larger than the final value as
there are some modes which give terms of opposite signs) and
showing very low frequencies, 650 and 690 cm-1, respectively.
The two equivalent modes in gas phase, on the contrary, still
show the typical pattern of conjugated chain systems dominated
by CC double and single bond stretchings at frequencies of
∼1800 and∼1300 cm-1, respectively.

3.3.1. Finite Field Analysis. As a last element of analysis
we report in Tables 13-20 the results obtained by applying
the finite field approximation expressed by eqs 11-18.

Before discussing the meaning of data reported in Tables 13-
20, some technical considerations on the numerical procedure
are required. As any finite difference technique, also that
exploited here needs some preliminary checks to obtain stable

results; in particular, as we exploit geometry optimizations with
external electric field, great importance is assumed by the choice
of the external field amplitude and of the convergence threshold
for the residual forces on the atoms after the optimization.49

For the latter point we have found that a threshold of 1.2×
10-4 au/bohr is a good compromise; by repeating the optimiza-
tions with tighter values we have in fact found very small
variations, less than the uncertainty inherent in the numerical
procedure (see Tables 19 and 20). Regarding the external field
amplitude, we have explored a quite large range, from 0.0002
to 0.0128 au (1 au of electrical field) 5.142× 1011 V m-1),
but the more stable results have been found with fields of
0.0004-0.0016 au of amplitude; for this reason in the tables
we report these values only.

A further aspect to be defined is the finite difference
expression used to calculate the components of the Taylor
coefficients reported in eqs 14 and 17; in particular for the first-
order quantitiesa1 andb2, we have

while for the second-orderb1 two different relations have been

(49) Reference 9c.

Figure 17. Drawing of normal mode 1 of NH2(CHdCH)2NO2 in
solution.

Table 13. Taylor Coefficients of Eq 14 for NH2(CHCH)CHO in
Vacuo with Respect to Applied External FieldF (au)a

b1

F a1 [µR](0,0) I II

0.0016 93.12 -701.7 -1137.1 -1131.7
0.0008 93.08 -688.1 -1102.3 -1090.7
0.0004 93.08 -688.6 -855.6 -773.4

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0)

is obtained from theb2 coefficient of eq 16 through eqs 17 and 18.

Table 14. Taylor Coefficients of Eq 14 for NH2(CHCH)CHO in
Water with Respect to Applied External FieldF (au)a

b1

F a1 [µR](0,0) I II

0.0016 165.61 -2276.1 -4457.3 -4458.7
0.0008 165.65 -2310.9 -4204.2 -4119.8
0.0004 165.80 -2298.0 -3490.6 -3656.8

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0)

is obtained from theb2 coefficient of eq 16 through eqs 17 and 18.

Table 15. Taylor Coefficients of Eq 14 for NH2(CHCH)2CHO in
Vacuo with Respect to Applied External FieldF (au)a

b1

F a1 [µR](0,0) I II

0.0016 182.27 -2643.0 -4538.1 -4517.6
0.0008 182.31 -2614.2 -4487.5 -4470.2
0.0004 182.27 -2611.5 -4088.1 -3995.1

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0)

is obtained from theb2 coefficient of eq 16 through eqs 17 and 18.

Table 16. Taylor Coefficients of Eq 14 for NH2(CHCH)2CHO in
Water with Respect to Applied External FieldF (au)a

b1

F a1 [µR](0,0) I II

0.0016 412.49 -17236.1 -41515.9 -41444.6
0.0008 409.40 -17266.2 -38406.1 -37369.8
0.0004 408.82 -17206.8 -40276.9 -40900.5

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0)

is obtained from theb2 coefficient of eq 16 through eqs17 and 18.

Table 17. Taylor Coefficients of Eq 14 for NH2(CHCH)NO2 in
Vacuo with Respect to Applied External FieldF (au)a

b1

F a1 [µR](0,0) I II

0.0016 92.83 -919.4 -1760.3 -1753.1
0.0008 92.79 -919.6 -1682.8 -1657.0
0.0004 92.55 -910.7 -1418.8 -1330.7

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0)

is obtained from theb2 coefficient of eq 16 through eqs 17 and 18.

Table 18. Taylor Coefficients of Eq 14 for NH2(CHCH)NO2 in
Water with Respect to Applied External FieldF (au)a

b1

F a1 [µR](0,0) I II

0.0016 247.08 -5112.3 -15621.1 -15924.2
0.0008 247.17 -5322.1 -15546.2 -15521.3
0.0004 246.46 -5335.9 -12863.1 -11968.7

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0)

is obtained from theb2 coefficient of eq 16 through eqs 17 and 18.

a1 = (1/2Fr)[µr(Fr,RF) - µr(-Fr,R-F)] (21)

b2 = (1/2Fr)[Rrr
e (Fr,RF) - Rrr

e (-Fr,R-F)] (22)
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tested

whereF and RF represent the external applied field and the
molecular geometry optimized in the presence of this field (R0

is the zero-field optimized geometry). Theoretically, we could
assume that the five-point procedure indicated as expression II
in eq 23 gives more accurate results with respect to the parallel
one exploiting only three points (expression I); actually the
numerical data reported in Tables 13-20 show that both
procedures are strongly dependent on the amplitude of the field.

The latter observation introduces a fundamental point of these
calculations: the reliability, and the physical meaning, of the
comparison with previous results obtained in the double
harmonic approximation as sums over normal mode compo-
nents.

The first thing to be stressed is that for first-order quantities,
i.e., a1 and [µR] static

(0,0) as directly obtained fromb2 by applying
eqs 17 and 18, the accord with the equivalent properties of
Tables 1 and 2, namely,Re + Rv andâv, is quite good both in
vacuo and in solution. This confirms two important formal
aspects.

First, it gives the proof quoted at the beginning of the
numerical section on the nonexistence of the problem of a
possible reorientation of the molecule during the optimization
in the presence of the external field when an algorithm using
redundant internal coordinates is exploited. Second, it numeri-
cally shows the complete equivalence between in vacuo and in
solution double-harmonic approximations formally shown in
Appendix 1. The latter point assumes a very important aspect
as the results presented here are the first ever computed on
molecular systems in the condensed phase.

Forb1 things are more complex, and also the numerical results
are less stable; this can be related to two different problems.
First, asb1 is a second-order quantity, i.e., it represents the
second derivative of the dipole moment with respect to the
external applied field, the numerical accuracy of this value will

be surely less than for first-order quantities; in our opinion this
point is enough to explain the instability of some results,
especially those of the largest molecules in solution (last column
in Table 20) for which the inherent accuracy of the method
cannot be equivalent to the calculation in vacuo, at variation of
the field amplitude.

The second problem, of formal nature, is given by the
presence of anharmonic components, namely, those indicated
as [µ3](1,0) + [µ3](0,1) in the expression ofb1 given in eq 15.
These two terms, related to electric and mechanical anharmo-
nicity, respectively, are not easy to compute as they involve
third derivatives of the dipole moment and second derivatives
of the potential energyV or, equivalently, of the functional free
energyG for the system in solution. In addition, no many
numerical data are available from the literature; only some small-
and medium-sized molecules in vacuo have been studied in a
general perturbation approach which enables considerations of
higher and higher orders on both the mechanical and electrical
anharmonicities,29,50but surely no results have ever been given
for systems in solution.

What results from data reported in Tables 13-20 is that the
computed discrepancies betweenb1 and the sum of electronic
and double-harmonic vibrational hyperpolarizabilities (row
indicated asâev in Tables 1 and 2) are too big to be induced by
only numerical inaccuracy, but surely have to be related to
anharmonical terms, which for all the molecules studied in the
present paper seem to be quite important, especially in solution
where they can even duplicate the double-harmonic values. This
additional aspect, which partially goes beyond the scope of the
present paper, is surely of interest and we hope to have the
chance to explore it in a more detailed way in the very near
future.
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Appendix 1

The Taylor expansion reported in eq 1 is done assuming what
is called the canonical or clamped-nuclei (CN) approximation.
The latter essentially allows the external fieldF to act first on

(50) Bishop, D. M.; Dalskov, E. K.J. Chem. Phys.1996, 104, 1004.

Table 19. Taylor Coefficients of Eq 14 for NH2(CHCH)NO2 in Vacuo with Respect to Applied External FieldF (au)a

b1

a1 [µR](0,0) (T1) (T2)

F T1 T2 T1 I II I II

0.0016 191.60 191.49 -3878.5 -7634.5 -7638.9 -7601.6 -7586.6
0.0008 191.22 191.76 -3861.6 -8265.6 -8476.0 -7686.6 -7714.9
0.0004 191.26 191.69 -3854.7 -10830.6 -11685.6 -7712.5 -7721.1

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0) is obtained from theb2 coefficient of eq 16 through eqs 17 and 18. Each
quantity has been computed with two different convergency criteria: that exploited in the previous calculations in which the threshold on the force
is 1.2× 10-4 au/bohr (au/radiant) (T1) and a stricter one with a threshold of 6× 10-5 (T2).

Table 20. Taylor Coefficients of Eq 14 for NH2(CHCH)NO2 in Water with Respect to Applied External FieldF (au)a

b1

a1 [µR](0,0) (T1) (T2)

F T1 T2 T1 I II I II

0.0016 1085.28 1084.31 -8099.7 -24254.4 -27023.0 -24680.5 -27104.8
0.0008 1237.91 1238.13 -10586.0 -35618.9 -39407.1 -35825.6 -39540.7
0.0004 1301.93 1300.10 -11742.7 -50660.6 -55674.5 -62908.7 -71936.5

a b1 is given in terms of the two formulas shown in eq 23; [µR](0,0) is obtained from theb2 coefficient of eq 16 through eqs 17 and 18.a1 and
b1 have been computed with two different convergency criteria: that exploited in the previous calculations in which the threshold on the force is
1.2 × 10-4 au/bohr (au/radiant) (T1) and a stricter one with a threshold of 6× 10-5 (T2).

b1 = [µr(Fr,RF) - 2µr(0,R0) + µr(-Fx,R-F)]/Fr
2 (I)

b1 = [16(µr(Fr,RF) + µr(-Fr,R-F)) - µr(2Fr,R2F) -

µr(-2Fr,R-2F) - 30µr(0,R0)]/12Fr
2 (II) (23)
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the electronic motions and then on the vibrational degrees of
freedom rather than simultaneously on both.51 In this case in
fact the same expansion should be written in the form

whereRF denotes the equilibrium molecular geometry with a
static electric field present andR0 the parallel one without the
field. The coefficients of the expansion are easily obtained by
applying the rules on partial derivatives; namely, we have

and

Equations 25-27 give the pure electronic (hyper)polarizabilities
(they are exactly equivalent to the expressions reported in eq
2), while eqs 26-28 report the nuclear relaxation contributions
to the vibrational (hyper)polarizabilities.

In the presence of the solvent, the derivatives with respect to
the geometry which compare in eqs 26-28 can be obtained by
recalling that for a molecular solute treated within the IEF-PCM
framework the equilibrium geometry corresponds to a minimum
of the functional free energyG(R) introduced in eq 3; as already
notedG(R) is the equivalent of the potential energyV of eq 7
when solute-solvent interactions are taken into account.

If we indicate withd the displacement in the solute equilib-
rium geometry due to the external field (RF ) R0 + d), then,
in the approximation of mechanical harmonicity forG(F,R), d
satisfies the following relation (from now on we prefer to shift
to a matrix form for the vectorial quantities, indicating them
with a bold character):

whereg andH are the gradient and the Hessian, both computed
at R0, of the free energy functional in the presence of the field,
respectively

By introducing the expansion ofG with respect to the field

we may rewrite eqs 30 and 31 in terms of Taylor expansions:

By introducing eqs 33 and 34 into eq 29, we obtain the following
expansion for the components of the displacement vectord:

whereH0 is the Hessian of the molecular solute in the absence
of the external applied fieldF. In eq 35 we have neglected all
the terms deriving from electric anharmonicity, i.e.,∂2µs/∂Ri∂Rj.

From eq 35 we can derive the first and second derivatives of
the equilibrium geometry with respect to the field

and consequently to rewrite eqs 26-28 as

A further development is then achieved by substituting the
Cartesian coordinates{Ri} with the normal coordinates{Qa}
which diagonalize the HessianH0; in this way we exactly obtain
expressions 9 and 10. The parallelism between the two sets of
equations is then complete once all the quantities are computed
in their respective environment, the gas phase for the isolated
system and the solution for the molecular solute.

JA980823C
(51) Bishop, D. M.; Kirtman, B.; Champagne, B.J. Chem. Phys.1997,

15, 5780.
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